Испытания бетона

Прочность бетона – это одна из основных технических характеристик данного материала определяющая его возможность выдерживать механические и химические нагрузки.

Что определяет прочность бетона, в чём важность данной характеристики

Бетон является одним из основных материалов при строительстве практически всех типов зданий и сооружений – жилых, промышленных, административных и т. д. В зависимости от того, какие задачи стоят перед строителями, какие требования заложены в проекте, какие факторы влияют на успешную эксплуатацию здания, зависят и требования к бетону. Различные марки используются для заливки фундамента и стен, для жилых домов и гидротехнических сооружений. А именно марка и определяет прочность материала.

beton_1.jpg

Поэтому прочность является наиболее важным параметром бетона, от которого зависят его эксплуатационные и физико-химические свойства, соответственно и эксплуатационные качества строительных конструкций в целом. Знание и учет данной характеристики позволяет точно подобрать марку бетона, избежать таких неприятных последствий как появление трещин, деформации, преждевременные разрушения с необходимость реставрации или капитального ремонта, а то и полного разрушения здания. Прочность бетона в обязательном порядке определяется застройщиком перед сдачей дома в эксплуатацию.

Методы определения прочности бетона

Для определения прочности материала необходим отбор образцов для проведения лабораторной проверки с помощью специальной аппаратуры. Эти проверки регламентированы действующими стандартами, принятыми для определенных видов бетона.

Определить прочность бетона можно и без отбора образцов, проведя все необходимые исследования непосредственно на строительной площадке. Это проводится при контроле прочности возведенных строительных конструкций.

Широко используется несколько методов определения прочности материала, которые, в зависимости от воздействия, подразделяются на две основные категории:

  • разрушающие методы исследований;
  • неразрушающие методы контроля.

В первом случае происходит полное разрушение пробы бетона – образца изготовленного из испытуемой смеси. Образец может быть взят и со строительной конструкции путем бурения.

При разрушающей методике образцы подвергаются воздействию пресса с непрерывным увеличением нагрузки. При достижении критического параметра нагрузки образец разрушается, параметр фиксируется и используется для расчета фактического показателя прочности. 

pib.jpg

Контроль разрушающим методом признан наиболее точным для определения прочности материала. Таким образом, определяется прочность на сжатие и данная процедура, в соответствии с требованиями СНиП, является обязательной при приёмке здания.

При контроле прочности неразрушающими методами нет необходимости в отборе образцов. Для этого используются различные приборы и инструменты позволяющие провести контроль прочности бетонной конструкции путем:

  • частичного разрушения;
  • ультразвукового исследования;
  • приложения ударной нагрузки.

Рассмотрим более подробно каждую из методик неразрушающего контроля.

Частичное разрушение

Данная технология подразумевает ограниченное воздействие на поверхность строительной конструкции с незначительным её повреждением. При этом определяются следующие испытания прочности:

  • На отрыв – клеевая фиксация стального диска и последующий отрыв с приложением определенных усилий. Сила, необходимая для разрушения поверхности фиксируется для дальнейшего определения прочности материала.
  • Скалывание – скользящее ударное воздействие на ребро бетонной конструкции. Фиксируется сила удара достаточная для откалывания небольшого куска материала.
  • Отрыв со скалыванием – наиболее точная из всех методик частичного разрушения. На поверхности строительной конструкции крепятся анкерные устройства, и определяется сила необходимая для их отрыва.

Ударная нагрузка

Методики ударного типа основаны на применении механических ударных воздействий к строительной конструкции. Здесь так же существует три основных метода:

  • Ударный импульс – основан на фиксации силы удара и необходимой для этого энергии.
  • Упругий отскок – замер величины отскока ударного элемента от поверхности строительной конструкции. 
  • Пластическая деформация – приложение силовой нагрузки шариковыми или дисковыми штампами на определенный участок. Нагрузка может быть ударной или путем механического давления. Далее, для расчета фактической прочности, берётся сила удара и размер полученного отпечатка.

Ультразвуковое исследование бетона на прочность

Исследование ультразвуком производится при помощи специальной аппаратуры. Приборы излучают ультразвуковые волны и фиксируют скорость их прохождения сквозь бетонную поверхность. На основании скорости прохождения через различные слои определяются их фактические показатели прочности. Это основное достоинство данного метода, недостатком же является заметный процент погрешности при расчетах.

Факторы, оказывающие влияние на прочность бетона

Бетон образуется в результате химического взаимодействия специальной смеси с водой. При этом свою прочность он получает по мере испарения влаги и застывания в заданной при заливке форме. Различные внешние и внутренние факторы могут влиять на скорость химических реакций и, соответственно, на прочность бетона.

Перечислим основные факторы, оказывающие заметное влияние на прочность полученного материала:

  • Соотношение цемента с песком и др. материалами в бетонной смеси.
  • Показатель активности цемента.
  • Баланс воды и цемента в бетонном растворе.
  • Показатели качества и параметры наполнителей бетона.
  • Качество смешивания компонентов смеси.
  • Время застывания бетонного раствора
  • Характеристика уплотнения.
  • Температура и влажность наружной среды.
  • Использование повторного вибрирования.

Кратко остановимся на каждом из факторов. Активность цемента напрямую влияет на прочность полученного материала – чем она выше, тем большую прочность приобретает бетон. Соответственно при малой активности бетон теряет в прочности и качестве.

beton_2.jpgВажной составляющей процесса создания качественной смеси является и соотношение цемента в используемой смеси. Цемент увеличивает прочность бетона и, соответственно, его нехватка негативно сказывается на характеристиках бетонных конструкций. Но здесь следует учесть и тот факт, что чрезмерное соотношение цемента в смеси приводит к увеличению усадки и ползучести. Прочность повышается лишь до определенного момента, после которого добавление цемента является нежелательным.

Бетон связывает не более 15-25% воды входящей в его состав, что обуславливает важность такого фактора как соотношение воды и цемента при застывании бетонной смеси. Для облегчения укладки бетона в формы в смеси находится от 40 до 70% воды. Вся излишняя влага является причиной образования пор в материале и, соответственно, к уменьшению показателей прочности. Соотношение воды и цемента – В/Ц непосредственно влияет на прочность в обратной прогрессии – чем выше соотношение В/Ц, тем ниже прочность и наоборот.

Песок и щебень содержат глинистые и органические наполнители, негативно влияющие на прочность бетона. Непосредственное влияние оказывает и размер материалов смеси – крупные фракции щебня и песка увеличивают прочность бетона, мелкие – уменьшают. Играет роль и шероховатость зерен щебня, чем она выше – тем лучше сцепление с цементными связующими и, соответственно, выше прочность полученного материала.

Перемешивание и вибрирование воздействуют на плотность бетонного раствора и, как следствие, на его прочность. Плотность и прочность материала взаимосвязаны – чем более плотно расположены частицы строительного материала, тем выше и прочность всей конструкции.

И, наконец, условия наружной среды и время отвердевания материала. Наиболее оптимальными для отвердевания считаются:

  • Температура воздуха – от 15 до 20°С.
  • Влажность воздуха – 90 – 100%.

В таких условиях прочность быстро возрастает и повышается время его отвердевания. Далее, постепенно, прочность продолжает увеличиваться, и этот процесс продолжается до полного испарения влаги либо до замерзания.

Повышение прочности бетона с течением времени – через 7 и 28 дней

Процесс отвердевания и приобретения конечной прочности длится 28 дней при точном соблюдении технологии. Существует следующая закономерность:

  • 3-й день - бетон приобретает 30% прочности.
  • 7-й день – от 60 до 80% прочности.
  • 28-й день – максимальная прочность.

Действующий ГОСТ рекомендует именно в вышеуказанные дни проводить испытания образцов на прочность.

Выведена следующая формула определения прочности материала в зависимости от того, сколько времени идёт застывание:

Rb(n) = Rb(28) lgn / lg28,

где Rb – прочность материала;

n - количество дней

lg - десятичный логарифм возраста материала.

Данная формула даёт только примерный показатель прочности. При этом необходимо учесть, что действует она лишь для материала, чей срок застывания составляет не менее трех дней.

Марка прочности бетона

Это основной показатель определяющий  предел прочности на сжатие в килограмм-силы на кв. см. Имеет буквенное и цифровое обозначение. Первой идет буква М, затем усредненный показатель прочности – М100, М200 и т. д. Данный показатель составляет (в кгс/см2) для марок бетона:

  • М100 – 98,23
  • М150 – от 130,96 до 163,71
  • М200 – 196,45
  • М250 – 261,93
  • М300 – 294,68 - 327,42
  • М350 – 327,42 - 360,18
  • М400 – 392,9
  • М450 – 458,39
  • М500 – 523,87

Как уже говорили выше марка и, соответственно, прочность материала зависят от соотношения цемента. Чем больше данного материала в смеси – тем прочность на сжатие и наоборот, чем меньше, тем меньшие показатели прочности демонстрирует бетон.

Сфера применения основных марок бетона

Главной прочностной характеристикой является прочность материала при приложении усилий сжатия, что определено маркой. Каждая марка используется для решения определенных задач, приведём наиболее распространенную сферу применения:

  • М100 – относится к категории легких бетонов, применяется для конструкций, на которые не прилагается значительные нагрузки. Это заливка основания под фундамент дома, устройство бордюров  и т. д.
  • М150 – более высокие, в сравнении с М100, прочностные показатели позволяют использовать для стяжки полов, прокладки пешеходных дорог. Также используется для фундамента сравнительно легких малоэтажных построек из дерева, легких ячеистых бетонов и др. подобных материалов.
  • М200 – наиболее широко используется в строительстве, характеризуется высокими прочностными характеристиками. Применяется для несущих стен, лестниц, фундаментов, пешеходных дорожек, а также заливки площадок, создания основания под бордюры.
  • М250 – сфера применения аналогична М200, но также используется и для производства плит перекрытий малоэтажных домов.
  • М300 – популярная в современном строительстве, применяется для заливки блоков основных стен, плит межэтажных перекрытий, фундаментов монолитного типа и т. д.
  • М350 – высокопрочная марка, применяется при производстве плит фундамента для многоэтажных домов, опорных конструкций и ж/б плит межэтажного перекрытия. Данная марка широко используется в современном монолитном строительстве, при производстве опорных колон и др. ответственных строительных конструкций.
  • М400 – широко используется при производстве железобетонных конструкций, при возведении гидротехнических строений. Прочностные качества данной марки позволяют использовать её при строительстве зданий несущих повышенные нагрузки.
  • М450 – высокопрочная марка бетона. Применяется при заливке особо ответственных конструкций – дамбы, плотины, тоннели метрополитена и т. д.
  • М500 – как и М450 относится к высокопрочным маркам. Благодаря высоким прочностным показателям основная сфера использования – строительство ответственных гидротехнических сооружений, высокопрочных  железобетонных изделий.
Разделы статей: 
5 причин сотрудничать с нами
prichina1.png prichina2.png prichina3.png prichina4.png prichina5.png
Профессионально Оперативно Выгодно Удобно Конфиденциально

 

ПОЯВИЛИСЬ ВОПРОСЫ? НАШ СПЕЦИАЛИСТ С РАДОСТЬЮ ОТВЕТИТ НА НИХ!